Coisotropic embeddings in Poisson manifolds
نویسنده
چکیده
We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already considered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson structure. Then we give conditions under which a Dirac manifold can be embedded coisotropically in a Poisson manifold, extending a classical theorem of Gotay. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 7, July 2009, Pages 3721–3746 S 0002-9947(09)04667-4 Article electronically published on February 10, 2009 COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS A. S. CATTANEO AND M. ZAMBON Abstract. We consider existence and uniqueness of two kinds of coisotropic We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already considered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson structure. Then we give conditions under which a Dirac manifold can be embedded coisotropically in a Poisson manifold, extending a classical theorem of Gotay.
منابع مشابه
On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds
In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proo...
متن کاملCoisotropic Submanifolds in Poisson Geometry and Branes in the Poisson Sigma Model
General boundary conditions (“branes”) for the Poisson sigma model are studied. They turn out to be labeled by coisotropic submanifolds of the given Poisson manifold. The role played by these boundary conditions both at the classical and at the perturbative quantum level is discussed. It turns out to be related at the classical level to the category of Poisson manifolds with dual pairs as morph...
متن کاملModuli of Coisotropic Sections and the Bfv-complex
We consider the local deformation problem of coisotropic submanifolds inside symplectic or Poisson manifolds. To this end the groupoid of coisotropic sections (with respect to some tubular neighbourhood) is introduced. Although the geometric content of this groupoid is evident, it is usually a very intricate object. We provide a description of the groupoid of coisotropic sections in terms of a ...
متن کاملTangent Dirac structures and submanifolds by Izu Vaisman
We write down the local equations that characterize the sub-manifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of T M endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of T M with the tangent Poisson s...
متن کاملGeneralized Classical Brst Cohomology and Reduction of Poisson Manifolds
In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible “first c...
متن کامل